

Adding Curves to an Orthogonal World

Extending the EDA Flow to Support Integrated Photonics

Paul Double July 2018

Traditional IC Design

- Designers & tool developers have lived in a orthogonal world for 60 + years
- EDA tools
 - Thousands of man years developing software
 - Representing 100's of millions lines of code
- MEMS and photonics have changed this

Simplified Integrated Circuit Design Flow

- Create an abstraction
- Create an implementation
- Verification
- Prepare for manufacturing
- Make Mask
- Fabrication
- Packaging and Testing

Modifying the tools and flows to support photonics

Integrated Photonics ICDS History

A Siemens Business

Mentor's Photonic Design Flows Supporting Two Flows - Pyxis and Tanner

Focusing new customer on Tanner

Support both flows:

- support OpenAccess
- share the same PDK
- interface to Mentors simulation and verification tools Calibre $\ensuremath{\mathbb{R}}$ & Eldo

Integrated Photonics Tanner Design Flow

Layout Assembly L-Edit

- The only tool developed specifically for MEMS, IC design and now integrated photonics
- Easy to use, easy to install, programmable physical layout engine with true curvilinear support
 - Full function layout editor with Schematic Driven Layout
 - Built-in support for curvilinear shapes
 - Dynamic scripting capability
 - OpenAccess
 - iPDK support
 - Interfaces to all MGC physical and electrical verification tools

Layout Assembly Announcing L-Edit Photonics

- Stand alone photonic design with L-Edit
 Available July 31
- New functionality added to L-Edit
 - Waveguide creation and editing
 - Crossing insertion
 - Netlisting

Layout Assembly Interactive Waveguide Routing

 Route waveguide wires interactively in L-Edit

 Users have complete control of wires

- Alignment to pins
- Waveguide conversion
 Menu, hotkey driven

Completed waveguide

- Configurable
- Supports multiple waveguide types

Layout Assembly Edit Waveguide Parameters

	de bradication.	avegulde Le	an tradition (A).	Edit Object(s)				
1461				<u>O</u> n In:	n lay	ayer: tance (1) T-Cell Parameters		
90	-					Width	500n	
\$\$		owo strip Auto4				Radius	5u	
0		U9223				Layer	Si:drawing	
73		100				Effective waveguide length	40u	
· ····?			1			List of vertices	58.592 165.3	
2400 Waveg								

- Edit waveguide parameters including the effective length
- Enables designers precision control over coherent waveguides to perform MZI based design

Layout Assembly Layout Centric Flow

- Layout is the golden design database
- No need for a schematic
- Netlist can be generated directly from L-Edit Photonics

* Header file: U:\projects\GitHub_UBU\SitPIU_IME_Library\SitPIU_IME_lanner_Library\GSiP_Z018_14_UFU\EBeam_cells_shor .subckt ebeam_gc_te1550 opt_fibre opt_wg .ends

.subckt ebeam_gc_te1550 opt_a1 opt_b1 opt_b2 .ends

.subckt ebeam_wg_integral_1550 A B

* End of header file: C:\projects\GitHub_UBC\SiEPIC_IME_Library\SiEPIC_IME_Tanner_Library\GSiP_2018_14_OFC\EBeam_cel:

.subckt EBeam_interferometer opt_TOP opt_BOTTOM ×L-Edit Mirror=True, L-Edit Rotation Angle=0

XGC1 opt_BOTTOM N1 ebeam.gc_te1550 library="Design kits/EBeam" lay_x=1.65e-05 lay_y=0 sch_x=1.65e-00 sch_y=0 ×L-Edit Mirror=True, L-Edit Rotation Angle=0

XGC2 opt_TOP N3 ebeam_gc_te1550 library="Design kits/EBeam" lay_x=1.65e-05 lay_y=0.000127 sch_x=1.65e-00 sch_ XU9105 N7 N8 ebeam_yg_integral_1550 library="Design kits/EBeam" layer="Si:drawing" points="[[22.25,92.2],[22 8],[0.777,31.715],[11.58,31.715],[11.58,55.411],[22.25,55.411],[22.25,34.8]]" r=5u w=0.5u wg_length=184.741u lay_x=-47e-00 sch_r=r0 sch_f=True

XU9106 N5 N6 ebeam_wg_integral_1550 library="Design kits/EBeam" layer="Si:drawing" points="[[27.75,34.8],[27 lay_y=6.35e-05 sch_x=-2.775e-00 sch_y=6.35e-00 sch_r=0 sch_f=True

XU9107 N3 N4 ebeam_wg_integral_1550 library="Design kits/EBeam" layer="Si:drawing" points="[[25,107],[25,127 -05 lay_y=0.000017125 sch_x=-1.2625e-00 sch_y=11.7125 sch_r=0 sch_f=True

×L-Edit Mirror=True, L-Edit Rotation Angle=270

XYB1 N2 N7 N6 ebeam_y_1550 lay_x=-2.5e-05 lay_y=2.74e-05 sch_x=-2.5e-00 sch_y=2.74e-00 sch_r=90 sch_f=True ×L-Edit Mirror=False, L-Edit Rotation Angle=270

XYB2 N4 N8 N5 ebeam_y_1550 lay_x⁻-2.5e-05 lay_y=9.96e-05 sch_x=-2.5e-00 sch_y=9.96e-00 sch_r=90 sch_f=False .ends

Integrated Photonics Design Flow Adding Automation

Layout Automation

New Product Coming September 2018

- Industry's first integrated photonic layout automation tool
 - Native on OA
 - Python is the extension language
- Simultaneous auto routing of both photonic waveguides and electrical nets
 - Placement Netlist and user defined
 - Enables "what if" and scalability of designs

Correct By Calibre

— Using foundry provided SVRF file

Photonic Automation Simultaneous Routing

- Photonic structures optimally work at a fixed temperature
- Heater elements are incorporated within the PCell to maintain a fixed temperature
- Removes the need place the bond pads and perform electrical routing in L-Edit or another layout editor

Layout Automation Example in the Design Flow

- Ising machine designed to solve the "Travelling Salesman" problem
- ~250 photonic components & 130 bond pads
- Placed & routed DRC clean
- ~9 minutes

Layout Automation Use Model

"Interactive" use model

- User interacts with Wing IDE
- Commands are entered with results seen visually in OA Viewer
- Calibre RealTime Custom runs in the background
- Flow enhanced by a 3rd Party IDE such as Wing or PyCharm

Layout Automation First Tape Out Successful

- Automated Silicon Photonic Circuit Layout and Design using a CMOS-Compatible photonics PDK
- Joint HPE/ST paper
 - U2U Munich, November, 2017
- Partnership with PDK development and design teams

CEA-Leti Photonics Update, July 2018

PHOTONIC FOUNDRY SUPPORT

Foundry Support is Key

Supported Today

- AIM
- Cornerstone
- CEA-Leti
- Fraunhofer HHI
- IMEC

Work in Progress

- AMF (IME)
- Silterra
- SMART Photonics
- TowerJazz
- IHP
- Ligentec

GSiP PDK Generic Silicon Photonic PDK

- Passive components
 - Waveguides
 - Bends, Sbend, Sticks, crossings
 - Tapers
 - Y-branches, MMI, directional coupler
 - Grating couplers

Active components

- Ring modulators
- Phase shifters for MZI design
- Need for training and demo's
- Can be used as a starting point for building a PDK

Come Join Us at ECOC 2018

- Join us at stand 436
- For demos of both CAP and L-Edit Photonics
- Discussion on how Mentor can help improve your photonic design productivity

Summary

First layout automation product for integrated photonics

- Enables "what if" design exploration
 - Too time consuming with manual layout
- Correct by Calibre
- Successful teacher customer
- Unique product differentiator
- Flows for all design sizes
- Complete flow with third party providers
- Growing photonics foundry support
 - Mentor PDK
 - iPDK

A Siemens Business

www.mentor.com